Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.426
1.
Folia Neuropathol ; 62(1): 13-20, 2024.
Article En | MEDLINE | ID: mdl-38741433

The accurate diagnosis of brain tumour is very important in modern neuro-oncology medicine. Magnetic resonance spectroscopy (MRS) is supposed to be a promising tool for detecting cancerous lesions. However, the interpretation of MRS data is complicated by the fact that not all cancerous lesions exhibit elevated choline (Cho) levels. The main goal of our study was to investigate the lack of Cho lesion /Cho ref elevation in the population of grade II-III gliomas. 89 cases of gliomas grade II and III were used for the retrospective analysis - glioma (astrocytoma or oligodendroglioma) grade II (74 out of 89 cases [83%]) and III (15 out of 89 cases [17%]) underwent conventional MRI extended by MRS before treatment. Histopathological diagnosis was obtained either by biopsy or surgical resection. Gliomas were classified to the group of no-choline elevation when the ratio of choline measured within the tumour (Cho lesion ) to choline from NABT (Cho ref ) were equal to or lower than 1. Significant differences were observed between ratios of Cho lesion /Cr lesion calculated for no-choline elevation and glial tumour groups as well as in the NAA lesion /Cr lesion ratio between the no-choline elevation group and glial tumour group. With consistent data concerning choline level elevation and slightly lower NAA value, the Cho lesion /NAA lesion ratio is significantly higher in the WHO II glial tumour group compared to the no-choline elevation cases ( p < 0.000). In the current study the results demonstrated possibility of lack of choline elevation in patients with grade II-III gliomas, so it is important to remember that the lack of elevated choline levels does not exclude neoplastic lesion.


Brain Neoplasms , Choline , Glioma , Humans , Choline/metabolism , Choline/analysis , Brain Neoplasms/pathology , Brain Neoplasms/diagnosis , Brain Neoplasms/metabolism , Glioma/pathology , Glioma/diagnosis , Glioma/metabolism , Middle Aged , Adult , Female , Male , Retrospective Studies , Proton Magnetic Resonance Spectroscopy/methods , Aged , Magnetic Resonance Spectroscopy/methods , Neoplasm Grading , Young Adult
2.
J Chromatogr A ; 1722: 464872, 2024 May 10.
Article En | MEDLINE | ID: mdl-38581975

LC-MS is an indispensable tool for small molecule analysis in many fields; however, many small molecules require chemical derivatization to improve retention on commonly used reversed-phase columns and increase ionization. Benzoyl chloride (BzCl) derivatization is commonly used for derivatization of primary and secondary amines and phenolic alcohols, though evidence exists that with proper reaction conditions (i.e., specific bases), other hydroxyl groups may be derivatized too. Previous studies have examined BzCl concentration, reaction times, and reaction temperatures for derivatization of amines and phenols for LC-MS analysis; however, use of different bases, base concentration, and extending to conditions to hydroxyl groups for LC-MS analysis has not been well-studied. To address this understudied area and identify reaction conditions for both amino and hydroxyl groups, we performed a systematic study of reaction conditions on multiple classes of potential targets. For selected derivatization methods, detection limits and performance in a variety of biological matrices were assessed. Results highlight the importance of tailoring derivatization methods for a given application as they varied by molecule and/or molecule class. Compared to the standard BzCl method commonly used, alternative methods were identified to better derivatize challenging analytes (glucosamine, choline, cortisol, uridine, cytidine) with detection limits reaching 1100, 9, 38, 170, and 67 nM compared to undetectable, 170, 86, 1000, and 86 nM respectively. Sub-nanomolar detection limits were achieved for norepinephrine with alternative derivatization approaches. Improved derivatization methods for several classes and molecules including nucleosides, steroids, and molecules containing hydroxyl groups were also identified.


Benzoates , Mass Spectrometry , Chromatography, Liquid/methods , Mass Spectrometry/methods , Limit of Detection , Humans , Amines/analysis , Amines/chemistry , Choline/analysis , Choline/chemistry , Hydrocortisone/analysis , Hydrocortisone/chemistry , Liquid Chromatography-Mass Spectrometry
3.
Int J Biol Macromol ; 254(Pt 2): 127573, 2024 Jan.
Article En | MEDLINE | ID: mdl-37923045

Crowded environments inside cells and biological fluids greatly affect protein stability and activity. PDC-109, a polydisperse oligomeric protein of the bovine seminal plasma selectively binds choline phospholipids on the sperm cell surface and causes membrane destabilization and lipid efflux, leading to acrosome reaction. PDC-109 also exhibits chaperone-like activity (CLA) and protects client proteins against various kinds of stress, such as high temperature and low pH. In the present work, we have investigated the effect of molecular crowding on these two different activities of PDC-109 employing Dextran 70 (D70) - a widely used polymeric dextran - as the crowding agent. The results obtained show that presence of D70 markedly increases membrane destabilization by PDC-109. Isothermal titration calorimetric studies revealed that under crowded condition the binding affinity of PDC-109 for choline phospholipids increases approximately 3-fold, which could in turn facilitate membrane destabilization. In contrast, under identical conditions, its CLA was reduced significantly. The decreased CLA could be correlated to reduced surface hydrophobicity, which was due to stabilization of the protein oligomers. These results establish that molecular crowding exhibits contrasting effects on two different functional activities of PDC-109 and highlight the importance of microenvironment of proteins in modulating their functional activities.


Seminal Plasma Proteins , Seminal Vesicle Secretory Proteins , Humans , Male , Cattle , Animals , Seminal Plasma Proteins/metabolism , Semen/metabolism , Seminal Vesicle Secretory Proteins/analysis , Seminal Vesicle Secretory Proteins/chemistry , Seminal Vesicle Secretory Proteins/metabolism , Spermatozoa/metabolism , Phospholipids/metabolism , Choline/analysis
4.
NMR Biomed ; 37(2): e5054, 2024 Feb.
Article En | MEDLINE | ID: mdl-37794648

The aim of the current study was to compare the performance of fully automated software with human expert interpretation of single-voxel proton magnetic resonance spectroscopy (1H-MRS) spectra in the assessment of breast lesions. Breast magnetic resonance imaging (MRI) (including contrast-enhanced T1-weighted, T2-weighted, and diffusion-weighted imaging) and 1H-MRS images of 74 consecutive patients were acquired on a 3-T positron emission tomography-MRI scanner then automatically imported into and analyzed by SpecTec-ULR 1.1 software (LifeTec Solutions GmbH). All ensuing 117 spectra were additionally independently analyzed and interpreted by two blinded radiologists. Histopathology of at least 24 months of imaging follow-up served as the reference standard. Nonparametric Spearman's correlation coefficients for all measured parameters (signal-to-noise ratio [SNR] and integral of total choline [tCho]), Passing and Bablok regression, and receiver operating characteristic analysis, were calculated to assess test diagnostic performance, as well as to compare automated with manual reading. Based on 117 spectra of 74 patients, the area under the curve for tCho SNR and integrals ranged from 0.768 to 0.814 and from 0.721 to 0.784 to distinguish benign from malignant tissue, respectively. Neither method displayed significant differences between measurements (automated vs. human expert readers, p > 0.05), in line with the results from the univariate Spearman's rank correlation coefficients, as well as the Passing and Bablok regression analysis. It was concluded that this pilot study demonstrates that 1H-MRS data from breast MRI can be automatically exported and interpreted by SpecTec-ULR 1.1 software. The diagnostic performance of this software was not inferior to human expert readers.


Breast Neoplasms , Choline , Humans , Female , Proton Magnetic Resonance Spectroscopy , Choline/analysis , Pilot Projects , Sensitivity and Specificity , Breast/diagnostic imaging , Magnetic Resonance Imaging/methods , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology
5.
Anal Bioanal Chem ; 416(4): 1011-1022, 2024 Feb.
Article En | MEDLINE | ID: mdl-38108841

Methionine and choline both are essential nutrients which are needed for methyl group metabolism. A methionine-choline-deficient (MCD) diet leads to pathological changes in the kidney. The mechanism of the MCD diet is complex, and fundamental research is still required to provide a better understanding of the driving forces behind it. We evaluated the regional effects of the MCD diet on the metabolites of mouse kidney tissue using desorption electrospray ionization mass spectrometry imaging technology. A total of 20, 17, and 13 metabolites were significantly changed in the cortex, outer medulla, and inner medulla, respectively, of the mouse kidney tissue after the administration of the MCD diet. Among the discriminating metabolites, only three metabolites (guanidoacetic acid, serine, and nicotinamide riboside) were significantly increased, and all the other metabolites showed a significant decrease. The results showed that there were significant region-specific changes in the serine metabolism, carnitine metabolism, choline metabolism, and arginine metabolism. This study presents unique regional metabolic data, providing a more comprehensive understanding of the molecular characteristics of the MCD diet in the kidney.


Choline , Non-alcoholic Fatty Liver Disease , Mice , Animals , Choline/analysis , Methionine/metabolism , Racemethionine/metabolism , Racemethionine/pharmacology , Diet , Mass Spectrometry , Kidney/metabolism , Serine/metabolism , Liver/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism
6.
Abdom Radiol (NY) ; 48(12): 3610-3623, 2023 12.
Article En | MEDLINE | ID: mdl-37493837

Prostate cancer is the second leading cause of cancer-related deaths in men in the United States. Imaging techniques such as CT, MRI, and bone scans have traditionally been used for diagnosis and staging. Molecular imaging modalities targeting the prostate-specific membrane antigen (PSMA) have recently gained attention due to their high affinity and accuracy. PSMA PET has been combined with other modalities such as multiparametric MRI for better diagnostic and prognostic performance. PSMA imaging has been studied at different clinical settings with a wide range of disease aggressiveness. In this review we will explore the role of PSMA PET in high-risk prostate cancer staging, biochemical recurrence, and castration-resistant prostate cancer. The primary focus of this review article is to examine the latest developments in the use of PSMA imaging and emphasize the clinical situations where its effectiveness has been demonstrated to significantly impact the treatment of prostate cancer. In addition, we will touch upon the potential future advancements of PSMA PET imaging and its evolving significance in the management of prostate cancer.


Prostate-Specific Antigen , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/drug therapy , Prostate-Specific Antigen/analysis , Positron Emission Tomography Computed Tomography , Choline/analysis , Neoplasm Staging , Recurrence , Molecular Targeted Therapy
7.
Int J Biol Macromol ; 230: 123252, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36639082

Nonalcoholic steatohepatitis (NASH) is a chronic liver disease characterized by inflammation and hepatic steatosis that may coincide with fibrotic activity. To date, no pharmacological agents have been approved for NASH treatment. Here, a homogeneous (1,3),(1,6)-ß-D-glucan (PUP-W-1, Mw: 41.07 kDa) was successfully purified from Polyporus umbellatus (Pers.) Fries sclerotia and characterized. The analysis showed that the PUP-W-1 backbone consisted of a repeating chain of eight →3)-ß-D-Glcp-(1 â†’ units, with branched chains of four ß-D-Glcp residues, joined by repeating 1,6-linkage units at the O-6 position of the backbone. The pharmacological effects of PUP-W-1 treatment in the context of NASH pathogenesis were explored using a methionine choline-deficient (MCD) diet-induced murine steatohepatitis model. The MCD model mice exhibited pronounced steatohepatitis, inflammatory activity, steatosis, stellate cell activation, and mild fibrotic activity. Treatment of the mice for three weeks with PUP-W-1 prevented the development of NASH due to the suppression of inflammation, lipid accumulation, and fibrosis. As suggested by these findings, PUP-W-1 may hold promise as a natural drug candidate or precursor for the treatment of NASH.


Non-alcoholic Fatty Liver Disease , Polyporus , Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , Glucans/pharmacology , Polyporus/chemistry , Diet , Choline/analysis , Methionine/analysis , Inflammation/pathology , Mice, Inbred C57BL , Liver
8.
Front Endocrinol (Lausanne) ; 13: 961254, 2022.
Article En | MEDLINE | ID: mdl-36105393

With an ageing of population and a splurging epidemic of diabetes mellitus (DM), the prevalence of complications associated with pathology of the central nervous system are expected to increase, which in the future may have serious consequences for public health. It is known that one of the main manifestations of brain damage in type 1 diabetes is cognitive impairment, which is possibly associated with the peculiarities of vascularization and interhemispheric asymmetry, which requires in-depth analysis using modern neuroimaging methods. The aim of the study is to assess the symmetry of structural, metabolic and neurovascularization changes in the brain in patients with type 1 diabetes and cognitive impairment. The study included 120 patients with type 1 diabetes aged 18 to 45 years suffering from cognitive impairment, and 30 people without cognitive decline and the control group (n=30) healthy people without diabetes. Neuropsychological testing included the Montreal Cognitive Dysfunction Assessment Scale (MoCA test). For neuroimaging methods, standard magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), contrast and non-contrast-enhanced perfusion were used. Statistical processing was carried out using the SPSS Statistic 2020 software. In patients with type 1 diabetes with cognitive impairment, as manifested by impaired memory and/or attention, perfusion imaging revealed the presence of brain asymmetry zones. Standard MRI allowed to demonstrate changes in the white, gray matter and hippocampus in the right hemisphere. The results obtained were refined taking into account the topical localization, so during the perfusion study, regions with asymmetric blood flow were identified - namely, the white matter of the frontal lobe and the gray matter in the occipital lobe. Spectroscopy of the brain revealed that it was in these areas of the brain that the most significant metabolic disorders were noted - in the form of significantly altered ratio of N-acetylaspartate (NAA)/choline (Cho) on the left, along with the asymmetry in phosphocreatine level (Cr 2) on the right. In conclusion, early preclinical predictive diagnostics with the use of modern neuroimaging methods allows for timely detection of impaired vascularization and brain metabolism in this group of patients, However, decreased perfusion in the region within the region of frontal lobe white matter and temporal lobe grey matter, and hippocampal cell metabolism by spectra should be highlighted among the parameters Cr right and NAA/Cho left.


Cognitive Dysfunction , Diabetes Mellitus, Type 1 , Brain/metabolism , Choline/analysis , Choline/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/pathology , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods
9.
Molecules ; 27(18)2022 Sep 14.
Article En | MEDLINE | ID: mdl-36144716

Natural deep eutectic solvents (NADESs) coupled with microwave-assisted extraction (MAE) were applied to extract total flavonoid compounds from spent sweet potato (Ipomoea batatas L.) leaves. In this study, ten different NADESs were successfully synthesized for the MAE. Based on single-factor experiments, the response surface methodology (RSM) was applied, and the microwave power, extraction temperature, extraction time, and solid−liquid ratio were further evaluated in order to optimize the yields of total flavonoid compounds. Besides, the extracts were recovered by macroporous resin for the biological activity detection of flavonoid compounds. As a result, NADES-2, synthesized by choline chloride and malic acid (molar ratio 1:2), exhibited the highest extraction yield. After that, the NADES-2-based MAE process was optimized and the optimal conditions were as follows: microwave power of 470 W, extraction temperature of 54 °C, extraction time of 21 min, and solid−liquid ratio of 70 mg/mL. The extraction yield (40.21 ± 0.23 mg rutin equivalents/g sweet potato leaves) of the model validation experiment was demonstrated to be in accordance with the predicted value (40.49 mg rutin equivalents/g sweet potato leaves). In addition, flavonoid compounds were efficiently recovered from NADES-extracts with a high recovery yield (>85%) using AB-8 macroporous resin. The bioactivity experiments in vitro confirmed that total flavonoid compounds had good DPPH and O2−· radical-scavenging activity, as well as inhibitory effects on E. coli, S. aureus, E. carotovora, and B. subtilis. In conclusion, this study provides a green and efficient method to extract flavonoid compounds from spent sweet potato leaves, providing technical support for the development and utilization of sweet potato leaves' waste.


Antioxidants , Ipomoea batatas , Antioxidants/chemistry , Choline/analysis , Deep Eutectic Solvents , Escherichia coli , Flavonoids/chemistry , Ipomoea batatas/chemistry , Microwaves , Plant Extracts/chemistry , Plant Leaves/chemistry , Rutin/analysis , Solvents/chemistry , Staphylococcus aureus
10.
Plant Biol (Stuttg) ; 24(6): 998-1009, 2022 Oct.
Article En | MEDLINE | ID: mdl-35880492

Numerous compounds in pollen can affect the foraging decision-making of bees. Clarification of phytochemical components and identification of key substances for bee foraging preference in pollen are essential steps for apiculture and developing a conservation strategy. Senna bicapsularis, a heterantherous plant that possesses three different stamen types in the same flower, among which bees forage selectively, provides us with an ideal research model for identification of potential substances of bee foraging preference. The lipid and protein compositions of pollen from the anthers of different stamens of S. bicapsularis were investigated and compared. The polyunsaturated fatty acids (PUFAs) and monounsaturated FAs (MUFAs) were highest among lipid molecules in pollen from short (S) stamens than from long (L) and medium (M) stamens. This result is consistent with the FA content measurement, showing the highest FAs and UFAs content in S pollen, especially α-linolenic acid. We inferred that α-linolenic acid might be one of the key substances for bee foraging preference in pollen. Moreover, proteomic analysis showed that several differentially expressed proteins involved in lipid biosynthesis were highly accumulated in S pollen, such as choline kinase 2, 3-oxoacyl-ACP synthase-like protein and choline/ethanolamine phosphotransferase 1, in line with the highest FA content of S pollen. Additionally, DEPs involved in 'starch and sucrose metabolism', 'phenylpropanoid biosynthesis' and 'cyanoamino acid metabolism' were more represented in S compared with L and M pollen. The study suggests that differences in proteomic and lipidomic profiling among the three different stamen types might affect foraging decision-making of bumblebees.


Lipidomics , Senna Plant , Animals , Bees , Choline/analysis , Choline Kinase/analysis , Ethanolamines/analysis , Flowers , Pollen/chemistry , Proteome , Proteomics , Starch/analysis , Sucrose/analysis , alpha-Linolenic Acid/analysis
11.
Inflammation ; 45(5): 1968-1984, 2022 Oct.
Article En | MEDLINE | ID: mdl-35419738

Nonalcoholic steatohepatitis (NASH) is a disease with a high incidence worldwide, but its diagnosis and treatment are poorly managed. In this study, NASH pathophysiology and DNA damage biomarkers were investigated in mice with NASH treated and untreated with melatonin (MLT). C57BL/6 mice were fed a methionine- and choline-deficient (MCD) diet for 4 weeks to develop NASH. Melatonin was administered at 20 mg/kg during the last 2 weeks. Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were measured, and hepatic tissue was dissected for histological analysis, evaluation of lipoperoxidation, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as nuclear factor-erythroid 2 (Nrf2), tumor necrosis factor alpha (TNF-α), inducible nitric oxide synthase (iNOS), and transforming growth factor beta (TGF-ß) expression by immunohistochemistry. DNA damage was evaluated using Comet assay, while a micronucleus test in bone marrow was performed to assess the genomic instability associated with the disease. Melatonin decreased AST and ALT, liver inflammatory processes, balloonization, and fibrosis in mice with NASH, decreasing TNF-α, iNOS, and TGF-ß, as well as oxidative stress, shown by reducing lipoperoxidation and intensifying Nrf2 expression. The SOD and GPx activities were increased, while CAT was decreased by treatment with MLT. Although the micronucleus frequency was not increased in mice with NASH, a protective effect on DNA was observed with MLT treatment in blood and liver tissues using Comet assay. As conclusions, MLT slows down the progression of NASH, reducing hepatic oxidative stress and inflammatory processes, inhibiting DNA damage via anti-inflammatory and antioxidant actions.


Choline Deficiency , Melatonin , Non-alcoholic Fatty Liver Disease , Alanine Transaminase , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Aspartate Aminotransferases , Biomarkers/metabolism , Catalase/metabolism , Choline/analysis , Choline/metabolism , Choline/pharmacology , Choline Deficiency/complications , Choline Deficiency/metabolism , DNA Damage , Diet , Glutathione Peroxidase/metabolism , Inflammation/metabolism , Liver/metabolism , Melatonin/pharmacology , Melatonin/therapeutic use , Methionine/analysis , Methionine/genetics , Methionine/metabolism , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/metabolism , Nitric Oxide Synthase Type II/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Oxidative Stress , Superoxide Dismutase/metabolism , Transforming Growth Factor beta/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
Dig Liver Dis ; 54(8): 1021-1029, 2022 08.
Article En | MEDLINE | ID: mdl-35288065

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is a critical event in the progression of nonalcoholic fatty liver disease (NAFLD). Steatosis induces lipotoxicity, driving the transition of simple fatty liver (NAFL) to NASH. Autophagy affects NAFLD by improving steatosis. AIM: To investigate whether ubiquitin-specific peptidase (USP)10 alleviates hepatic steatosis through autophagy. METHODS: A methionine-choline-deficient diet (MCDD) and choline-deficient diet (CDD) were used to model rodent NASH and NAFL, respectively. HepG2 cells were treated with palmitic acid to model hepatocellular steatosis. A viral carrier was used to regulate the USP10 level. Real-time fluorescence quantitative polymerase chain reaction, western blotting, histology, and electron microscopy were used to detect autophagic activity and steatosis. RESULTS: In vivo, a time-dependent correlation of USP10 and autophagic activity in the liver was found during NAFLD (including NAFL and NASH) modeling. After 8 weeks of modeling, the autophagic activity of NASH was lower than that of the healthy controls and those with NAFL. USP10 could promote autophagy-related pathways and molecules and increase the synthesis of autophagosomes in NASH, improving steatosis, inflammation, and fibrosis. In vitro, autophagy inhibitors reversed the lipid-lowering effect of USP10 without decreasing the level of fatty acid ß-oxidation. CONCLUSION: USP10 ameliorated histological steatosis, inflammation, and fibrosis. USP10 alleviated hepatic steatosis in NASH in an autophagy-dependent manner.


Non-alcoholic Fatty Liver Disease , Animals , Autophagy , Choline/analysis , Choline/metabolism , Choline/pharmacology , Fibrosis , Inflammation/metabolism , Liver/pathology , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/pharmacology
13.
Rheumatology (Oxford) ; 61(4): 1529-1537, 2022 04 11.
Article En | MEDLINE | ID: mdl-34282445

OBJECTIVE: Axonal/neuronal damage has been shown to be a pathological finding that precedes neuropsychiatric manifestations in SLE. The objective of this study was to determine the presence of axonal dysfunction in childhood-onset SLE patients (cSLE) and to determine clinical, immunological and treatment features associated with its occurrence. METHODS: We included 86 consecutive cSLE patients [median age 17 (range 5-28) years] and 71 controls [median age 18 (5-28) years]. We performed proton magnetic resonance spectroscopic imaging using point resolved spectroscopy sequence over the superior-posterior region of the corpus callosum and signals from N-acetylaspartate (NAA), choline-based (CHO), creatine-containing (Cr), myo-inositol (mI), glutamate, glutamine and lactate were measured and metabolites/Cr ratios were determined. Complete clinical, laboratory and neurological evaluations were performed in all subjects. Serum IL-4, IL-5, IL-6, IL-10, IL-12, IL-17, TNF-α and INF-γ cytokine levels, antiribosomal P protein antibodies (anti-P) and S100ß were measured by ELISA using commercial kits. Data were compared by non-parametric tests. RESULTS: NAA/Cr ratios (P = 0.035) and lactate/Cr ratios (P = 0.019) were significantly decreased in cSLE patients when compared with controls. In multivariate analysis, IFN-γ levels [odds ratio (OR) = 4.1; 95% CI: 2.01, 7.9] and depressive symptoms (OR = 1.9; 95% CI: 1.1, 3.2) were associated with NAA/Cr ratio. Increased CHO/Cr was associated with the presence of cognitive impairment (OR = 3.4; 95% CI: 2.034, 5.078; P < 0.001). mI/Cr ratio correlated with cumulative glucocorticoids dosage (r = 0.361, P = 0.014). CONCLUSION: NAA and CHO ratios may be useful as biomarkers in neuropsychiatric cSLE. Longitudinal studies are necessary to determine whether they predict structural damage.


Interferon-gamma , Lupus Erythematosus, Systemic , Adolescent , Adult , Aspartic Acid/metabolism , Brain/metabolism , Child , Child, Preschool , Choline/analysis , Choline/metabolism , Humans , Interferon-gamma/metabolism , Lactic Acid/metabolism , Lupus Erythematosus, Systemic/diagnosis , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods , Young Adult
14.
J Nutr Biochem ; 100: 108906, 2022 02.
Article En | MEDLINE | ID: mdl-34801688

Although eggs are a nutrient dense food delivering high quality protein and micronutrients, given that eggs are also rich in cholesterol and choline, whether egg intake is contraindicated for individuals at risk for cardiovascular disease (CVD) remains controversial. In this mini review, we provide a Precision Nutrition perspective, highlighting the importance of two factors: the effect of egg cholesterol on plasma cholesterol concentrations in most people and in cholesterol hyper-absorbers, and the effect of egg choline on plasma concentrations of trimethylamine-N-oxide (TMAO), a microbe-host co-metabolite independently associated with increased CVD risk. We discuss recent evidence from intervention studies showing that in most individuals egg intake does not have a deleterious effect on plasma lipid profiles, but also highlight that some individuals are cholesterol hyper-absorbers or individuals who are not able to maintain cholesterol homeostasis by suppressing endogenous cholesterol synthesis, and that for these individuals the intake of eggs and other dietary sources of cholesterol would be contraindicated. We also discuss the complex relationship between dietary sources of choline vs. phosphatidylcholine, the gut microbiome, and plasma TMAO concentrations, highlighting the high inter-individual variability in TMAO production and gut microbiome profiles among healthy individuals and those with metabolic conditions. Precision Nutrition approaches that allow the clinician to stratify risk and improve dietary recommendations for individual patients are desirable for improving patient compliance and health outcomes. More clinical studies are needed to determine how to identify individuals at risk for CVD for whom egg intake is contraindicated vs. those for whom egg intake is not associated with negative effects on plasma lipid profiles nor plasma TMAO concentrations.


Cardiovascular Diseases/etiology , Cholesterol/blood , Eggs , Heart Disease Risk Factors , Methylamines/blood , Bacteria/metabolism , Biological Variation, Population , Cholesterol/analysis , Choline/analysis , Choline/metabolism , Diet , Eggs/adverse effects , Gastrointestinal Microbiome , Humans , Phosphatidylcholines/metabolism
15.
Molecules ; 26(21)2021 Oct 28.
Article En | MEDLINE | ID: mdl-34770919

Choline is an officially established essential nutrient and precursor of the neurotransmitter acetylcholine. It is employed as a cholinergic activity marker in the early diagnosis of brain disorders such as Alzheimer's and Parkinson's disease. Low levels of choline in diets and biological fluids, such as blood plasma, urine, cerebrospinal and amniotic fluid, could be an indication of neurological disorder, fatty liver disease, neural tube defects and hemorrhagic kidney necrosis. Meanwhile, it is known that choline metabolism involves oxidation, which frees its methyl groups for entrance into single-C metabolism occurring in three phases: choline oxidase, betaine synthesis and transfer of methyl groups to homocysteine. Electrocatalytic detection of choline is of physiological and pathological significance because choline is involved in the physiological processes in the mammalian central and peripheral nervous systems and thus requires a more reliable assay for its determination in biological, food and pharmaceutical samples. Despite the use of several methods for choline determination, the superior sensitivity, high selectivity and fast analysis response time of bioanalytical-based sensors invariably have a comparative advantage over conventional analytical techniques. This review focuses on the electrocatalytic activity of nanomaterials, specifically carbon nanotubes (CNTs), CNT nanocomposites and metal/metal oxide-modified electrodes, towards choline detection using electrochemical sensors (enzyme and non-enzyme based), and various electrochemical techniques. From the survey, the electrochemical performance of the choline sensors investigated, in terms of sensitivity, selectivity and stability, is ascribed to the presence of these nanomaterials.


Biosensing Techniques , Choline/chemistry , Electrochemical Techniques , Metals , Nanocomposites , Nanotubes, Carbon , Oxides , Choline/analysis , Choline/biosynthesis , Humans , Metals/chemistry , Molecular Structure , Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Oxides/chemistry
16.
Technol Cancer Res Treat ; 20: 15330338211036852, 2021.
Article En | MEDLINE | ID: mdl-34372732

BACKGROUND: To investigate the diagnostic efficacy of choline (Cho) value of magnetic resonance spectroscopy (MRS) in rabbit with VX2 liver tumor via comparative and quantitative analysis with the choline compounds concentration measured by enzyme linked immunosorbent assay (ELISA). METHODS: MRS was performed on normal liver and VX2 tumor. The Cho value of VX2 tumor was compared with that of normal liver. Tissues were harvested for ELISA to detect the concentrations of acetylcholine (ACh), glycophorophosphygholine (GPC) and phosphochorine (PC). The diagnostic performance of Cho value and concentrations of choline compounds were assessed by receiver operating characteristic (ROC) curve and area under ROC curve (AUC). The specificity and sensitivity were discussed by the maximum Youden's index. RESULTS: The concentration of ACh was obviously higher than that of GPC and PC both in VX2 tumor and normal liver (P < 0.01). Furthermore, the concentration differences among ACh, GPC and PG were the third power of 10. Both the ACh concentration and Cho value of MRS in VX2 tumor were significantly higher than those in normal liver (P < 0.01). The AUC of ACh in VX2 tumor was 0.883, when the cutoff value was 7259000, the sensitivity and specificity of the diagnosis of liver cancer were 94.4% and 77.8%, respectively. The AUC of Cho in VX2 tumor was 0.807, when the cutoff value was 28.35, the sensitivity and specificity of the diagnosis of liver cancer were 83.3% and 77.8%, respectively. CONCLUSION: The change of Cho value in MRS between liver cancer and normal liver was consistent with the changes of concentrations of choline compounds measured by ELISA, especially the change of ACh concentration. The diagnostic efficiency of Cho value and that of choline compounds concentration in liver cancer were extremely similar, with the AUC more than 0.8. We conclude that MRS may be applied as an important, non-invasive biomarker for the diagnosis of liver cancer.


Choline/metabolism , Liver Neoplasms/diagnosis , Magnetic Resonance Spectroscopy/methods , Proton Magnetic Resonance Spectroscopy/methods , Animals , Choline/analysis , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/metabolism , Preliminary Data , ROC Curve , Rabbits , Tumor Cells, Cultured
17.
Molecules ; 26(15)2021 Jul 30.
Article En | MEDLINE | ID: mdl-34361796

Meat is a rich source of energy that provides high-value animal protein, fats, vitamins, minerals and trace amounts of carbohydrates. Globally, different types of meats are consumed to fulfill nutritional requirements. However, the increasing burden on the livestock industry has triggered the mixing of high-price meat species with low-quality/-price meat. This work aimed to differentiate different meat samples on the basis of metabolites. The metabolic difference between various meat samples was investigated through Nuclear Magnetic Resonance spectroscopy coupled with multivariate data analysis approaches like principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA). In total, 37 metabolites were identified in the gluteal muscle tissues of cow, goat, donkey and chicken using 1H-NMR spectroscopy. PCA was found unable to completely differentiate between meat types, whereas OPLS-DA showed an apparent separation and successfully differentiated samples from all four types of meat. Lactate, creatine, choline, acetate, leucine, isoleucine, valine, formate, carnitine, glutamate, 3-hydroxybutyrate and α-mannose were found as the major discriminating metabolites between white (chicken) and red meat (chevon, beef and donkey). However, inosine, lactate, uracil, carnosine, format, pyruvate, carnitine, creatine and acetate were found responsible for differentiating chevon, beef and donkey meat. The relative quantification of differentiating metabolites was performed using one-way ANOVA and Tukey test. Our results showed that NMR-based metabolomics is a powerful tool for the identification of novel signatures (potential biomarkers) to characterize meats from different sources and could potentially be used for quality control purposes in order to differentiate different meat types.


Food Contamination/analysis , Meat/analysis , Metabolome , Metabolomics/methods , Amino Acids/analysis , Animals , Cattle , Chickens , Choline/analysis , Creatine/analysis , Equidae , Food Contamination/prevention & control , Goats , Humans , Lactic Acid/analysis , Least-Squares Analysis , Magnetic Resonance Spectroscopy , Mannose/analysis , Multivariate Analysis , Principal Component Analysis , Species Specificity
18.
J Zhejiang Univ Sci B ; 22(7): 563-574, 2021 Jul 15.
Article En | MEDLINE | ID: mdl-34269009

This study focused, for the first time, on the effect of ultrasonic features on the extraction efficiency of secondary metabolites in mustard seed cake (MSC). The nematostatic potential of sonicated seed cake was examined against the second-stage juveniles (J2s) of root-knot nematode, Meloidogyne javanica. The results show that a 35 ppm (parts per million) concentration of a sonicated extract (SE) sample of MSC caused 65% J2s mortality at 18 h exposure period in vitro. It also significantly suppressed the root-knot index (RKI=0.94) in tomato roots. The lethal concentration values for SE were 51.76, 29.79, and 13.34 ppm, respectively, at 6, 12, and 18 h of the exposure period, and the lethal concentration values for the non-sonicated extract (NSE) sample were 116.95, 76.38, and 55.59 ppm, respectively, at similar exposure time. Sinapine and gluconapin were identified as the major compounds in ultrasonic-assisted MSC. Because of the high extraction efficiency of metabolites in the SE, all treatments of SE were shown to be antagonistic to J2s. Thus, this study of ultrasonication activity-based profiling of MSC may help generate target-based compounds at a scale relevant to the control of disease caused by nematodes in economic crops.


Choline/analogs & derivatives , Crops, Agricultural , Glucosinolates/analysis , Mustard Plant/metabolism , Plant Roots/metabolism , Seeds/metabolism , Tylenchoidea/physiology , Animals , Choline/analysis , Chromatography, Liquid , Solanum lycopersicum/metabolism , Solanum lycopersicum/parasitology , Microscopy, Electron, Scanning , Plant Roots/parasitology , Seeds/chemistry , Solvents , Sonication , Spectrometry, Mass, Electrospray Ionization , Ultrasonics
19.
Anal Bioanal Chem ; 413(21): 5349-5360, 2021 Sep.
Article En | MEDLINE | ID: mdl-34258650

Trimethylamine-N-oxide (TMAO), a microbiome-derived metabolite from the metabolism of choline, betaine, and carnitines, is associated to adverse cardiovascular outcomes. A method suitable for routine quantification of TMAO and its precursors (trimethylamine (TMA), choline, betaine, creatinine, and propionyl-, acetyl-, and L-carnitine) in clinical and food samples has been developed based on LC-MS. TMA was successfully derivatized using iodoacetonitrile, and no cross-reactions with TMAO or the other methylamines were detected. Extraction from clinical samples (plasma and urine) was performed after protein precipitation using acetonitrile:methanol. For food samples (meatballs and eggs), water extraction was shown to be sufficient, but acid hydrolysis was required to release bound choline before extraction. Baseline separation of the methylamines was achieved using a neutral HILIC column and a mobile phase consisting of 25 mmol/L ammonium formate in water:ACN (30:70). Quantification was performed by MS using external calibration and isotopic labelled internal standards. The assay proved suitable for both clinical and food samples and was linear from ≈ 0.1 up to 200 µmol/L for all methylamines except for TMA and TMAO, which were linear up to 100 µmol/L. Recoveries were 91-107% in clinical samples and 76-98% in food samples. The interday (n=8, four duplicate analysis) CVs were below 9% for all metabolites in clinical and food samples. The method was applied successfully to determine the methylamine concentrations in plasma and urine from the subjects participating in an intervention trial (n=10) to determine the effect of animal food ingestion on methylamine concentrations.


Betaine/analysis , Carnitine/analysis , Choline/analysis , Creatinine/analysis , Methylamines/analysis , Betaine/blood , Betaine/urine , Carnitine/analogs & derivatives , Carnitine/blood , Carnitine/urine , Choline/blood , Choline/urine , Chromatography, Liquid/methods , Creatinine/blood , Creatinine/urine , Female , Food Analysis/methods , Humans , Limit of Detection , Male , Methylamines/blood , Methylamines/urine , Middle Aged , Tandem Mass Spectrometry/methods
20.
Nutrients ; 13(6)2021 May 28.
Article En | MEDLINE | ID: mdl-34071317

(1) Background: Methyl-group donors (MGDs), including folate, choline, betaine, and methionine, may influence breast cancer (BC) risk through their role in one-carbon metabolism; (2) Methods: We studied the relationship between dietary intakes of MGDs and BC risk, adopting data from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort; (3) Results: 318,686 pre- and postmenopausal women were followed between enrolment in 1992-2000 and December 2013-December 2015. Dietary MGD intakes were estimated at baseline through food-frequency questionnaires. Multivariable Cox proportional hazards regression models were used to quantify the association between dietary intake of MGDs, measured both as a calculated score based on their sum and individually, and BC risk. Subgroup analyses were performed by hormone receptor status, menopausal status, and level of alcohol intake. During a mean follow-up time of 14.1 years, 13,320 women with malignant BC were identified. No associations were found between dietary intakes of the MGD score or individual MGDs and BC risk. However, a potential U-shaped relationship was observed between dietary folate intake and overall BC risk, suggesting an inverse association for intakes up to 350 µg/day compared to a reference intake of 205 µg/day. No statistically significant differences in the associations were observed by hormone receptor status, menopausal status, or level of alcohol intake; (4) Conclusions: There was no strong evidence for an association between MGDs involved in one-carbon metabolism and BC risk. However, a potential U-shaped trend was suggested for dietary folate intake and BC risk. Further research is needed to clarify this association.


Breast Neoplasms/epidemiology , Diet/statistics & numerical data , Adult , Aged , Betaine/analysis , Choline/analysis , Europe , Female , Folic Acid/analysis , Humans , Methionine/analysis , Methylation , Middle Aged , Nutrition Assessment , Prospective Studies , Risk Factors
...